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Abstract

In a recent paper, Cho and Kim [Journal of Applied Mechanics] proposed a higher-order cubic zigzag theory of lam-
inated composites with multiple delaminations. The proposed theory is not only accurate but also efficient because it
work with a minimal number of degrees of freedom with the application of interface continuity conditions as well as
bounding surface conditions of transverse shear stresses including delaminated interfaces. In this work, we investigate
the dynamic behavior of laminated composite plates with multiple delaminations. A four-node finite element based on
the efficient higher-order zigzag plate theory of laminated composite plates with multiple delaminations is developed to
refine the prediction of frequencies, mode shape, and time response. Through the dynamic version of the variational
approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Natural
frequency prediction and time response analysis of a composite plate with multiple delaminations demonstrate the accu-
racy and efficiency of the present finite element method. To prevent penetration violation at the delamination interfaces,
unilateral contact constraints by Lagrange multiplier method are applied in the time response analysis. The present
finite element is suitable for the prediction of dynamic response of thick composite plates with multiple and arbitrary
shaped delaminations.
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1. Introduction

Recently, many researchers have given special attention to the development of advanced composite
materials because they possess high specific strength and stiffness which are advantageous in the applica-
tions of aircraft, marine, and automobiles. In particular, analysis of dynamic characteristics is quite impor-
tant to understand the stability and strength of structures. Especially for structural design in the critical
environments, highly accurate dynamic analysis is required. For the enhanced analysis of laminated com-
posite plates, three types of higher-order theory have been developed: the smeared theory (Lo et al., 1977),
layerwise theory (Reddy, 1987), and simplified zigzag theory (Di Sciuva, 1986). Extensive up-to-date re-
views can be found in the review papers of Noor and Burton (1989), Kapania and Raciti (1989), and Reddy
and Robbins (1994). Recently, the so-called ‘‘zigzag’’ theories in the third category have received much
attention because of their accuracy and efficiency in the ply-level analysis. Most of the theories assume that
interfaces are perfectly bonded (Di Sciuva, 1986; Cho and Parmerter, 1992, 1993). A postprocess method
based on zigzag theory was also proposed (Cho and Kim, 1996). However, in many applications, this
assumption is not adequate for the prediction of the behaviors of composite laminates. Low-speed impacts
by foreign objects or imperfections in the manufacturing process may generate multiple delaminations in
composite laminates. Strength and stiffness of composite structures with delaminations decrease more sig-
nificantly than the undelaminated composite plates.
Therefore, vibration problems of delaminated beam/plate have been analyzed by numerous researchers.

The classical beam model (Wang et al., 1982; Wang and Lin, 1995), first-order shear deformation model
(Shen and Grady, 1992; Gummadi and Hanagud, 1995), and higher-order shear model with piezolayers
(Chattopadhyay et al., 1999; Seeley and Chattopadhyay, 1999) were employed for the natural frequency
analysis. Damage detection/health monitoring problems were also considered in the frameworks of vibra-
tion analysis (Islam and Craig, 1994).
For the analysis of multi-layered laminated plates with arbitrary shaped multiple delaminations, finite

element method is a suitable choice to treat the general loading, boundary conditions, layups, and geom-
etry. Even though finite element based on layerwise plate theory (Lee et al., 1993) can provide an adequate
framework for the delamination analysis, this theory is not computationally efficient since the number of
degrees-of-freedom of this theory depends upon the number of layers. Thus, to reduce the active de-
grees-of-freedom of the problem, a global–local approach has been proposed by Cho and Kim (1997),
Cho and Lee (1998), and Kim and Cho (1999).
In the recent study, zigzag higher-order theories have been extended to the weakened interface prob-

lem (Cheng et al., 1996; Di Sciuva, 1997). But the zigzag theory, which describes the opening as well as
slipping behavior of the delaminated parts, has not appeared until Cho and Kim (2001) present an effi-
cient higher-order laminated plate theory with delaminations. Chattopadhyay and Gu (1994) developed
a higher-order theory to analyze the delamination buckling problem. However, this theory is compli-
cated and employs many primary variables. An efficient higher-order zigzag theory with minimal
degrees-of-freedom was developed to analyze multiple delamination problem (Cho and Kim, 2001).
Buckling and vibration of one-dimensional beam-plate were analyzed in Cho and Kim (2001). The bifur-
cation buckling of two-dimensional plate with multiple delaminations was reported in Kim and Cho
(2002). The buckling of shells with multiple-delaminations based on the same model was presented in
Kim and Cho (2003).
In the present study, we focus on the dynamic behaviors of composite laminated plates with arbitrary

multiple delaminations. Eigenvalue problems and time responses are analyzed. In the early stage of dy-
namic analysis, The finite element method for contact-impact problem was developed by Thomas et al.
(1976). Ramkumar et al. (1983) proposed composite beam modeling technique with delamination. Espe-
cially, Shen and Grady (1992) experimented for a beam with rectangular delamination to obtain first open-
ing mode shape. Dynamic model for laminated plates with a delamination was performed by Todd and
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Frank (1998). The analysis of composite plate under dynamic loading which is induced by low velocity im-
pacts was reported in Sekine et al. (1998).
The model in the present study is based on the efficient higher-order zigzag plate theory with minimal

degrees of freedom which was proposed in the previous papers (Cho and Kim, 2001; Kim and Cho,
2002). Especially, in the analysis of time response of delaminated plate, the violation of unilateral contact
conditions in the delaminated region is prohibited by imposing contact constraints through the Lagrange
multipliers. The natural frequencies and time responses obtained from the present study are compared to
those of the previously reported results (Shen and Grady, 1992; Chattopadhyay et al., 2000). The developed
finite element was numerically verified by using laminated composites with circular, elliptic, and rectangular
shaped delaminations, respectively. The present finite element method is suitable in the predictions of the
dynamic response of a thick composite plate with multiple and arbitrary delaminations.
2. Displacement model

In this section, a higher-order zigzag displacement field for composite plates with multiple delaminations
is briefly reviewed. The detailed description can be found in the previous works (Cho and Kim, 2001; Kim
and Cho, 2002).
Displacement field of composite plates with multiple delaminations is considered. The deformation

behavior is assumed within the range of linear elasticity. The configuration of the composite plate with mul-
tiple delaminations is shown in Fig. 1. Higher-order zigzag in-plane displacement field with delaminations is
obtained by superimposing a zigzag linear field and piecewise constant delamination field to the globally
cubic varying field.
The starting displacement field can be written as follows:
uaðxb; zÞ ¼ u0aðxbÞ þ waðxbÞzþ naðxbÞz2 þ /aðxbÞz3 þ
XN�1

k¼1
Sk

aðxbÞðz� zkÞHðz� zkÞ þ
XD
d¼1

�udaðxbÞHðz� zdÞ;

ð1Þ

u3ðxb; zÞ ¼ wðxbÞ þ
XD
d¼1

�wdðxbÞHðz� zdÞ; ð2Þ
where u0a, w denote the displacement of a point on the reference plane. wa are the rotations of the normal to
the reference plane about the xa axis. N is the number of total layers. D is the number of the delamination
interfaces.H(z � zk) is the Heaviside unit step function. The terms �uda , �w

d represent the possible jumps in the
slipping and opening displacements, which permit the incorporation of the delamination for the laminated
composites.
x

y

z

Delaminations

Fig. 1. Configuration of laminated composite plate with multiple delaminations.
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The deformed schematic configuration and the kinematical variables are shown in Fig. 2. By applying
top and bottom surface transverse shear stress free conditions, the following displacement field is obtained:
ua ¼ u0a � w;az� Kab/bz
2 þ /az

3 þ
XN�1

k¼1
Sk

aðxbÞðz� zkÞHðz� zkÞ þ
XD
d¼1

�udaðxbÞHðz� zdÞ; ð3Þ

u3ðxb; zÞ ¼ wðxbÞ þ
XD
d¼1

�wdðxbÞHðz� zdÞ; ð4Þ
in which,
Kab ¼ 3h
2

dab þ
1

2h

XN�1

k¼1
akab. ð5Þ
Applying transverse shear stress continuity conditions at the interfaces between layers, the change of slope
Sk

a can be determined in terms of the primary variables of reference plane:
Sk
a ¼ akac/c � �wk

;adkd ; ð6Þ
where the coefficient akac represents the change in the slope at each interface, and depend only upon the
material properties of each layer. dkd is the Kronecker delta function. The term �wk

;adkd represents the change
in the slope at each delamination interface in which if the delamination terms �uda and �wd are neglected, the
displacement field is the same as that proposed by Cho and Parmerter (1992, 1993).
The strain tensor associated with the small displacement theory of elasticity are given by
eab ¼ 1
2
ðua;b þ ub;aÞ

¼ 1
2

u0a;b þ u0b;a � ðw;ab þ w;baÞz�
3

2
hð/a;b þ /b;aÞz2 �

1

2h

XN�1

k¼1
ðakac/c;b þ akbx/x;aÞz2 þ ð/a;b þ /b;aÞz3

(

þ
XN�1

k¼1
ðakac/c;b þ akbx/x;a � 2�wk

;abdkdÞðz� zkÞHðz� zkÞ þ
XD
d¼1

ð�uda;b þ �udb;aÞHðz� zkÞ
)

ð7Þ

ca3 ¼ ua;3 þ u3;a ¼ � 3h/a þ
1

h

XN�1

k¼1
akac/c

 !
zþ 3/az

2 þ
XN�1

k¼1
akac/c. ð8Þ
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Fig. 2. Deformed configuration of laminates with multiple delaminations.
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The equilibrium equations and boundary conditions can be derived from Hamilton principle and they can
omitted here.
3. Finite element formulation

3.1. Stiffness matrix formulation

To assess the validity of the dynamic version of EHOPTWD (efficient higher-order plate theory with
delamination; Cho and Kim, 2001; Kim and Cho, 2002), a finite element was developed for two-dimen-
sional problems. The present laminated plate theory, which have been developed, has a second derivative
of w (transverse deflection at the reference plane). Thus C1 (slope-continuous) functions are required. How-
ever, it is well known in plate theory that it is difficult to impose C1 conditions at the interfaces between
elements in arbitrarily oriented quadrilateral and triangular elements. The triangular non-conforming ele-
ment was developed by Specht (1988) and the rectangular non-conforming element was developed by Wanji
and Cheung (1997). But, the DKQ element developed by Batoz and Tahar (1982) is the simplest element,
which passes the patch test and satisfies the Kirchhoff constraints. In the present study, we adopted the con-
cept of DKQ element to overcome the C1 continuity problem.
The total potential energy can be divided into bending (including membrane term) and shear parts and

unilateral Lagrange multiplier parts, which are needed to prevent penetration violations. Potential energy
with Lagrange multiplier prohibits the penetration of the upper layer into the substrate layer at the delam-
ination interfaces. The in-plane bending energy including the membrane energy U e

b and the transverse shear
energy U e

s and unilateral constraint Lagrange multiplier U
D
s per element are expressed as
P ¼ Ub þ U s þ UD
s ; ð9Þ
where
U e
b ¼

1

2

Z
Ae

Z h

0

fegT½Qb	
ðkÞfegdzdAe ¼

Z
Ae
fegT½Ab	fegdAe;

U e
s ¼

1

2

Z
Ae

Z h

0

fcgT½Qs	
ðkÞfcgdzdAe ¼

Z
Ae
fcgT½As	fcgdAe;

UD
s ¼

0 �wd > 0;PD
d¼1

k�wd �wd < 0;

8<:
ð10Þ
where, [Ab] and [As] are the stiffnesses of the bending and shear energies analytically integrated through the
thickness to save the computing time, respectively. D is the node number of the delamination domain and k
is the Lagrange multiplier. The model configuration that considers the delamination contact by using
Lagrange multiplier is shown in Fig. 3.
For the four-noded quadrilateral element, nodal displacement vector {a}e is given by
fage ¼
�
u0a;w;w;a;/a; �u

d
a ; �w

d; �wd;a
�T
. ð11Þ
Natural coordinates n and g are used in the shape functions and coordinate transformation functions.
The primary displacement unknowns are expressed in terms of nodal variables and shape functions as
u0a ¼
X4
i¼1

Niu0ai; �uda ¼
X4
i¼1

Ni�udai; /a ¼
X4
i¼1

Ni/ai; ð12Þ
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Fig. 3. Model configuration considering delamination contact by using Lagrange multiplier.
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w;a ¼
X4
i¼1

N aiwi þ P aiw;xi þ H aiw;yi


 �
; ð13Þ

�wd;a ¼
X4
i¼1



N ai�wdi þ P ai�wd;xi þ H ai�wd;yi

�
; ð14Þ
where Ni are the conventional bilinear shape functions, and Nai, Pai, and Hai are the shape functions of the
DKQ element.

3.2. Mass matrix formulation

In solving the eigenvalue problem and time integration analysis by the finite element method, a mass
matrix is required. The eigenvalue problem is given as,
ðKe � x2M eÞfage ¼ f0g; ð15Þ
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where K e andM e denote the element stiffness matrix and mass matrix, respectively, x represents the natural
frequency and {a}e indicates the eigen-vectors of nodal displacement corresponding to the eigenvalue.
However, the DKQ element cannot define the transverse deflection w inside an element. It only specifies

w along the edge of the element. When a mass matrix is required, the transverse deflection w needs to be
described within an element. Therefore, to compute the element mass matrix, a refined non-conforming dis-
placement proposed by Cheung et al. (2000) is adopted.
The mass matrix in the element local system can be expressed as
M e ¼
Z
V e

q½N 	T½N 	dV .
Refined non-conforming displacement w (Cheung et al., 2000) can be expressed as
w ¼ w
 � aðw
 � wbÞ ¼ Nfag; ð16Þ

wb ¼
X4
i¼1

Niwi ¼ Nbfag; ð17Þ
where, w* is the displacement function of 12-DOF quadrilateral element based on the non-conforming dis-
placement, and wb is a linear function. {a} is nodal displacement vector and a is an adjustable constant.
Finally, we can obtain the following interpolation function for transverse deflection w:
N ¼ N 
 � aðN 
 � NbÞ; ð18Þ

w ¼
X4
i¼1

Nwiwi þ Pwiw;xi þ Hwiw;yi. ð19Þ
In the delaminated zone, nodal displacement �wd can also be interpolated by the same subparametric
function and it can be expressed as,
�wd ¼
X4
i¼1

Nwi�wdi þ Pwi�wd;xi þ Hwi�wd;yi. ð20Þ
The explicit form of shape function [N] used in constructing element mass matrix is given by,
½N 	 ¼

B1 B5 ½0	3�2 ½0	3�2d ½0	3�3d
½0	3�2 B2 ½0	3�2 ½0	3�2d ½0	3�3d
½0	3�2 ½0	3�3 B3 ½0	3�2d ½0	3�3d
½0	3�2 ½0	3�3 B1 ½0	3�2d ½0	3�3d
½0	3k�2 ½0	3k�3 BðkÞ

4 ½0	3k�2d BðkÞ
2 dkd

½0	3d�2 ½0	3d�3 ½0	3d�2 BðdÞ
1 BðdÞ

5

266666666664

377777777775
; ð21Þ
where k = 1, 2, . . . , N � 1, d = 1, 2, . . . , D, and
B1 ¼
Ni 0

0 Ni

0 0

264
375; ð22Þ

B2 ¼
�Nxi �Pxi �Hxi

�Nyi �Pyi �Hyi

0 0 0

264
375; ð23Þ
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B3 ¼
�K11Ni �K12Ni

�K21Ni �K22Ni

� �
; ð24Þ

B4 ¼
aðkÞ11 Ni aðkÞ12 Ni

aðkÞ21 Ni aðkÞ22 Ni

0 0

264
375. ð25Þ
3.3. Time integration

Equation of motion for dynamic behavior is given as
Mf€agnþ1 þ Cf _agnþ1 þ Kfagnþ1 ¼ fF gnþ1; ð26Þ
whereM, K, and C are the mass matrix, the stiffness matrix, and the damping matrix. {a} is nodal displace-
ment vector. F is external force. In the present study, damping term is neglected.
To solve the matrix equations of motion, the Newmark method (Sekine et al., 1998) is employed. This

method is very popular and guarantees reliable solution. The Newmark scheme algorithm is given by
fagnþ1 ¼ fagn þ Dtf _agn þ 1
2
� b

� �
Dt2f€agn þ bDt2f€agnþ1; ð27Þ

f _agnþ1 ¼ f _agn þ ð1� cÞDtf€agn þ cDtf€agnþ1; ð28Þ
where Dt represents time step between tn+1 and tn. The coefficients b and c are parameters, which can be
determined to obtain the integration accuracy and stability. The values of b = 0.5 and c = 0.7 are picked
up in the present study.
Substituting Eqs. (27) and (28) into (26), the matrix form of Eq. (26) can be written as
eKf€agnþ1 ¼ eF nþ1. ð29Þ
From Eq. (29), acceleration in the next step is obtained by calculating inverse of matrix eK . As this algo-
rithm is repeated, time response of the delaminated plate structure can be obtained.

3.4. Time integration for considering dynamic contact algorithm

Unilateral contact algorithm is applied so that the time response may not violate the contact constraints.
Dynamic equation of motion with contact algorithm can be expressed as follows:
Mf€ag þ Cf _ag þ Kfag þ GTfkg ¼ F ; ð30Þ

Gfag ¼ dwd ; ð31Þ
where G is the contact constraint matrix and dwd is the gap between upper layer and lower layer at the
delamination interface.
Substituting Eqs. (27) and (28) into (30) and (31), equilibrium equations are reduced to the following

matrix form:
K
_

GT

G 0

" #
anþ1
knþ1

� �
¼

Rnþ1

dwd

( )
; ð32Þ
where
K
_

¼ 2M
Dt2

þ K; Rnþ1 ¼ F nþ1 þMf€agn þ
2M
Dt2b

fagn þ Dtf _agn þ
Dt2

2
ð1� 2bÞf€agn

� �
. ð33Þ
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This algorithm is executed in the following manner. First, the nodal displacements which describe the rel-
ative motion of delaminations are constrained. Second, the reaction force and relative displacement of the
delamination zone are checked. If the reaction force is positive or the relative displacement is negative, this
contact algorithm is applied repeatedly until these contact conditions are satisfied. This scheme for satisfy-
ing contact constraints is applied in each time step.
In the delaminated zone, when the relative displacement was positive, the contact force was zero. That is,

the time response is governed by Eq. (30). On the contrary, if the relative displacement was negative, con-
tact force was imposed by Eq. (31). The behavior of composite plate with delaminations is predicted by
using Lagrange multipliers to prevent penetration violation between delaminated layers.
4. Numerical examples

To assess the dynamic performance and the validity of the developed finite element of the present study,
eigenvalue problem and time response problem for laminated composite plate with multiple and arbitrary
shape delaminations are considered. Some of the results of the present theory are compared to the exper-
iment results (Shen and Grady, 1992). In the circular and elliptic delamination cases, the variation of buck-
ling loads is investigated as a function of the geometric size. Fig. 4 shows the mesh configuration of circular
and elliptic delaminations. This simulation result can be baseline data for monitoring the health of lami-
nated composite plates with arbitrary shaped multiple delaminations at any locations. For a multiple
delamination case, a parametric study is performed. The results give the strength prediction of composite
structures with multiple delaminations. To understand the dynamic responses with multiple delaminations
in arbitrary position, Newmark scheme considering contact between interfaces is employed.

4.1. Eigenvalue problems

For the numerical evaluation of the performance of the proposed model, cantilever composite plates with
center delamination are considered. The stacking sequence of the delaminated composite is [(0/90)2]s and the
thickness of plate is 1.016 mm. The plate has length a = 127 mm, and width b = 12.7 mm. The density
is 1477 kg/m2. The material properties of the numerical examples are given in the Table 1. In the
present numerical examples, 18 · 4 mesh configuration is used for all computations. As shown in Fig. 5
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Fig. 4. Mesh configuration of the composite plate with a circular and elliptic delamination in center position. (Shaded areas indicate
the circular and elliptic delamination zone, respectively.)



Table 1
Material properties

Graphite-epoxy layer

E1 = 1.344 · 105 MPa
E2 = E3 = 1.034 · 104 MPa
G12 = G13 = 4.999 · 103 MPa
G23 = 1.999 · 103 MPa
m = 0.33
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and Table 2, first, second, and third bending natural frequencies are predicted very accurately by the present
finite element, better than Chattopadhyay et al. (2000) did. First bending natural frequency is higher than
those of the experiment results (Shen and Grady, 1992). As the size of delaminated zone increases, the nat-
ural frequency is decreased. Second bending natural frequency occurs in accordance with NASTRAN solu-
tion. As the delamination length increases, the third bending natural frequency is dramatically decreased,
much more than the first and second frequencies. The result of HOT of Fig. 5 was obtained from Chatto-
padhyay et al. (2000). The mode shapes of the above composite with delamination are shown in Fig. 6.
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Table 2
Bending frequency comparison

Delamination
length [mm]

Experimenta

[Hz]
Nastrana 3D
(element) [Hz]

HOTa [Hz] Present
theory [Hz]

First bending frequency 0 79.83 81.75 82.1 81.7
25.4 78.16 80.429 80.8 80.2
50.8 75.37 75.136 77.7 76.1
76.2 66.95 66.531 68.3 67.2
101.6 57.54 55.809 59.8 56.1

Second bending frequency 0 Null 510.7 513.4 510.1
25.4 504.1 499.6 509.2
50.8 478.6 515.7 488.1
76.2 399.3 420.8 385.7
101.6 305.7 346.7 325.4

Third bending frequency 0 Null 1423.8 1432.4 1430
25.4 1172.8 1217.5 1220
50.8 772.5 826.2 850
76.2 739.6 751.3 760
101.6 717.9 735.5 731

a (Chattopadhyay et al., 2000).
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The mode shapes offer information on the position and shape of the delaminations. First and second bending
modes are shown in Fig. 6(a) and (b), respectively. The first and second twisting modes are shown in Fig. 6(c)
and (d), respectively. The third bending mode appears with two nodal lines as shown in Fig. 6(e).
For the multiple delamination case, the configurations of the multiple delaminations are shown in Fig. 7.

Total of eight layers piled up. Number 1 represents the bottom interface, numbers 2, 3, and 4 locates above
1. This graph shows the natural frequency with the variation of the delamination positions. As shown in
Fig. 8(a), the first natural frequency was decreased slightly, when the delamination is located near bottom.
In Fig. 8(b), the second natural frequency was decreased dramatically, as the delamination approached the
center. As the multiple delaminations approached the center, the plate became the more flexible. Fig. 8(c)
shows the third natural frequency. The Fig. 8(c) shows that the frequency compared to that of the undel-
aminated case. The frequency predicted by the present model is always in the lower side. Fig. 8(d) shows the
fourth natural frequency. The frequency of the fourth mode compared to that of the undelaminated case
was significantly lower.
In the circular and elliptic delamination cases, the eigenvalue problem was analyzed using a clamped

five-ply [0/90/0/90/0] composite plate model. The dimensions of the plate were length/width ratio = 1,
and thickness length /thickness ratio was equal to 118. A circular delamination size was 30% of the whole
composite plate. From Fig. 9 and Table 3, it can be seen that the frequency changes according to delam-
ination shape effect. The Fig. 10 shows geometry of composite plate with elliptic delamination. The delam-
ination size affected the higher frequencies much more than the lower frequencies. The position information
of arbitrary and multiple delaminations of a global structure can be obtained accurately because the present
finite element is reliable for arbitrary shape of delaminations.

4.2. Dynamic responses

Deflections of the composite plates with rectangular, circular (length ratio r = 1), and elliptic (length
ratio r = 1.9091) delaminations were obtained by time integration analysis, considering the constraint of
contact.
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Clamped square plate with [0/90/0/90/0] layup is considered. The material properties for this case
are given in Table 1. In the rectangular-shaped delamination case, the geometric configuration is given
as length/width ratio = 10 and length/thickness ratio = 125. Flow chart of contact algorithm in time
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integration is given in Fig. 11. To visualize delamination zone response behaviors more distinctly, the rel-
ative transverse displacements of rectangular delaminated zone shown in Fig. 13 are magnified by 5 times.
Delamination zone size is set to 50% of the whole plate in this case. Fig. 12(a) shows the vertical displace-
ment of rectangular-shaped delamination zone without considering penetration violation. As the time step
increases, the penetration violation in the delamination zone appears.
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The time responses with contact constraints are compared to those without constraints. The higher
modes appear more distinctly in the case without considering contact conditions while in the case of con-
sidering contact the higher frequency modes do not appear clearly in the global motion because higher
modes are strictly constrained to satisfy unilateral contact conditions. Even though the frequencies of
the model with contact constraints are quite close to the one without contact constraints, the time responses
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Table 3
Frequency according to the change of delamination length ratio

a/b (width/length) First frequency
[Hz]

Second
frequency [Hz]

Third
frequency [Hz]

Fourth
frequency [Hz]

Fifth
frequency [Hz]

0.4737 0.24416 0.32443 1.01769 1.5455 1.6562
0.7778 0.24407 0.32427 1.01803 1.5465 1.6601
1 0.24388 0.32399 1.01783 1.5492 1.6700
1.6667 0.24379 0.32387 1.01616 1.5535 1.6797
1.9091 0.24378 0.32388 1.01546 1.5556 1.6826

Delamination

1x

2x

3x

length
width

Fig. 10. The geometry of composite plate with elliptic delamination.



Fig. 11. Flow chart of contact algorithm in time integration.
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Fig. 12. (a) Dynamic response of the laminated plate with the rectangular delaminated zone without contact constraint. (b) Dynamic
response of the laminated plate with the circular delaminated zone without contact constraint. (c) Dynamic response of the laminated
plate with the elliptic delaminated zone without contact constraint.
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are significantly different from each other. In the situation of delamination zone closed, the response con-
sidering contact conditions show mostly fundamental mode of time response. And when delamination
zones become open, high frequency modes and contact behavior appear.
As shown from Figs. 13–15, the time response of the plate with a circular delamination is quite different

from that with the rectangular delamination but the response with elliptic delamination is qualitatively
quite similar to the case of circular delamination. Fig. 13(a) shows the vertical displacement of the plate
with a rectangular delamination zone when the contact constraint is considered. This figure shows that
the delamination interface opens when the plate is bent downward. Similar to Fig. 13(a), Fig. 13(b) and
(c) represent the vertical displacement with nodes of number 1, 2 and number 1, 2, and 3 positions, which
is depicted in Fig. 7. As the number of delamination interfaces through the thickness increases, the delam-
ination opening amplitude decreases.
In circular and elliptic delamination problem, the transverse displacements in the delamination zone are

magnified by 3 times and they are shown in Figs. 14 and 15. Elliptic delamination length ratio r is 1.9091.
Comparing Fig. 13(a) with Fig. 14(a), the opening amplitude of rectangular delamination case is larger than
that of the circular delamination case. From Figs. 13–15, the circular and elliptic delamination interface
opening is observed more frequently than the rectangular delamination case.
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Fig. 13. (a) Dynamic response of the laminated plate with one rectangular delamination. (b) Dynamic response of the composite plate
with two rectangular delaminations. (c) Dynamic response of the composite plate with three rectangular delaminations.
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Fig. 14. Dynamic response of the composite plate with one (a) and two (b) circular delaminations.
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Fig. 15. Dynamic response of the case with one (a) and two (b) elliptic delaminations.
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5. Conclusions

In the present study, a finite element based on a higher-order zigzag theory with multiple delaminations
was developed to analyze the dynamic behavior of a structure with multiple delaminations. By imposing
transverse shear stress free condition of the top and bottom surfaces and stress interface continuity condi-
tions between the layers with delaminations, layer-dependent displacement variables were eliminated. Final
displacement fields of the undelaminated zone have only reference primary variables. In the delaminated
zone, the minimal number of degrees-of-freedom is still retained. Thus, this theory can be applied to the
problems with many thick layers and multiple delaminations.
Through the eigenvalue problem and time integration analysis of composite plates with multiple delam-

inations, it is observed that the natural frequencies predicted by the present EHOPTWD are in good agree-
ment with experiment data, HOT and NASTRAN-3D solutions. The present finite element based on the
zigzag higher-order theory demonstrated accurate predictions of natural frequencies and mode shapes
for various types of delaminations in the moderate thick plate range.
For the time integration scheme, to prevent the penetration problem in the delamination zone, Lagrange

multiplier method was applied. The time response considering unilateral contact constraint through



J. Oh et al. / International Journal of Solids and Structures 42 (2005) 6122–6140 6139
Lagrange multipliers was performed by Newmark scheme. The present four-node zigzag finite element
which retains the minimal degrees of freedom for composite plate with multiple delaminations showed
its applicability and effectiveness in dynamic analysis.
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